Enhanced effect of water vapor on complete oxidation of formaldehyde in air with ozone over MnOx catalysts at room temperature.

نویسندگان

  • De-Zhi Zhao
  • Chuan Shi
  • Xiao-Song Li
  • Ai-Min Zhu
  • Ben W-L Jang
چکیده

At room temperature, the enhanced effect of water vapor on ozone catalytic oxidation (OZCO) of formaldehyde to CO2 over MnOx catalysts and the reaction stability was reported. In a dry air stream, only below 20% of formaldehyde could be oxidized into CO2 by O3. In humid air streams (RH≥55%), ∼100% of formaldehyde were oxidized into CO2 by O3 and the reaction stability was significantly enhanced. Meanwhile, in situ Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectra of OZCO of HCHO demonstrate that the amount of both monodentate and bidentate carbonate species on MnOx, in the dry stream, increased gradually with time on stream (TOS). However, in the humid stream, almost no accumulation of carbonate species on the catalysts was observed. To clarify the enhanced mechanism, formaldehyde surface reactions and CO2 adsorption/desorption on the fresh, O3 and O3+H2O treated MnOx catalysts were examined comparatively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catalytic oxidation of benzene with ozone over Mn/KIT-6.

Benzene is one of the target compounds to be removed from air owing to its carcinogenicity. In this study, benzene oxidation with ozone over a MnOx/KIT-6 catalyst was carried out for the first time. MnOx/KIT-6 was synthesized using two different Mn precursors: Mn acetate and Mn nitrate. The characteristics of the synthesized catalysts were examined by X-ray diffraction, X-ray photoelectron spec...

متن کامل

Experimental and Kinetic Study of CO Oxidation Over LaFe1-xCuxO3 (x=0, 0.2, 0.4, 0.6) Perovskite-Type Oxides

In this paper, catalytic oxidation of CO over the LaFe1-xCuxO3 (x= 0, 0.2, 0.4, 0.6) perovskite-type oxides was investigated. The catalysts were synthesized by sol-gel method and characterized by XRD, BET, FT-IR, H2-TPR and SEM methods. The catalytic activity of catalysts was tested in catalytic oxidation of CO. XRD patterns confirmed the synthesized perovskites to be single-phase perovskite-ty...

متن کامل

Degradation of Low Concentrations of Formaldehyde in Sono Catalytic Ozonation Advanced Oxidation Processes using Zero-valent Iron

The purpose of the current study is to evaluate formaldehyde degradation ratio with various methods in a batch reactor. In this work, the ozonation, sonolysis (ultrasonic), and ozone sonolysis, sono catalytic ozonation (SCO), and nano zero-valent iron catalyst processes were investigated for removal of formaldehyde. In addition, the influence of important factors such as pH (5–9), ultrasonic po...

متن کامل

Room Temperature Synthesis of Mequinol by Using Ionic Liquids as Homogeneous Recyclable Catalysts

For the synthesis of Mequinol (4-methoxy phenol), two acidic ionic liquids based on imidazolium cation (BMSIL and IMSIL) synthesized and characterized by FT-IR, 1H NMR, and CHNS analyses. Tan, the Baeyer–Villiger oxidation of para-anisaldehyde was studied with these ionic liquids, as the catalysts. The results showed that the BMSIL with more Brønsted acidic functions had higher c...

متن کامل

Effects of the Solvent and Calcination Temperature on LaFeO3 Catalysts for Methanol Oxidation

In this work, two types of solvents ethanol or water were used in preparation of the LaFeO3 catalysts by citrate sol gel method. The obtained samples were subjected to various calcination temperatures in order to study the catalytic activity and stability for methanol electro-oxidation by XRD, cyclic voltammetry and chronoamperometry. The crystallinity of the LaFeO3 ph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of hazardous materials

دوره 239-240  شماره 

صفحات  -

تاریخ انتشار 2012